A quasi-trapezoid inequality for double integrals
نویسندگان
چکیده
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولRules for Quasi-Static Double-Surface Potential Integrals
This paper presents a comparison of a new semi-analytical expression with Gaussian-quadrature formulas for the quasi-static double-surface potential integrals arising in the boundary integral (BI) models of micron-size objects, such as RF-MEMS switches. The integrals considered are the quasi-static Green’s functions for the scalar arid vector potentials, with constant or 96 IEEEAnfennas and Pro...
متن کاملMinkowski's Inequality for Integrals
The following inequality is a generalization of Minkowski's inequality C12.4 to double integrals. In some sense it is also a theorem on the change of the order of iterated integrals, but equality is only obtained if p = 1. 13.14 Theorem (Minkowski's inequality for integrals) Let XX and YY be-finite measure spaces and u u X × Y → ¯ be ⊗-measurable. Then X Y uuxx yy dyy p dxx 1/p Y X uuxx yy p dx...
متن کاملA Note on the Perturbed Trapezoid Inequality
In this paper, we utilize a variant of the Grüss inequality to obtain some new perturbed trapezoid inequalities. We improve the error bound of the trapezoid rule in numerical integration in some recent known results. Also we give a new Iyengar’s type inequality involving a second order bounded derivative for the perturbed trapezoid inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The ANZIAM Journal
سال: 2003
ISSN: 1446-1811,1446-8735
DOI: 10.1017/s1446181100008075